MEG source localization under multiple constraints: an extended Bayesian framework.

نویسندگان

  • Jérémie Mattout
  • Christophe Phillips
  • William D Penny
  • Michael D Rugg
  • Karl J Friston
چکیده

To use Electroencephalography (EEG) and Magnetoencephalography (MEG) as functional brain 3D imaging techniques, identifiable distributed source models are required. The reconstruction of EEG/MEG sources rests on inverting these models and is ill-posed because the solution does not depend continuously on the data and there is no unique solution in the absence of prior information or constraints. We have described a general framework that can account for several priors in a common inverse solution. An empirical Bayesian framework based on hierarchical linear models was proposed for the analysis of functional neuroimaging data [Friston, K., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J., 2002. Classical and Bayesian inference in neuroimaging: theory. NeuroImage 16, 465-483] and was evaluated recently in the context of EEG [Phillips, C., Mattout, J., Rugg, M.D., Maquet, P., Friston, K., 2005. An empirical Bayesian solution to the source reconstruction problem in EEG. NeuroImage 24, 997-1011]. The approach consists of estimating the expected source distribution and its conditional variance that is constrained by an empirically determined mixture of prior variance components. Estimation uses Expectation-Maximization (EM) to give the Restricted Maximum Likelihood (ReML) estimate of the variance components (in terms of hyperparameters) and the Maximum A Posteriori (MAP) estimate of the source parameters. In this paper, we extend the framework to compare different combinations of priors, using a second level of inference based on Bayesian model selection. Using Monte-Carlo simulations, ReML is first compared to a classic Weighted Minimum Norm (WMN) solution under a single constraint. Then, the ReML estimates are evaluated using various combinations of priors. Both standard criterion and ROC-based measures were used to assess localization and detection performance. The empirical Bayes approach proved useful as: (1) ReML was significantly better than WMN for single priors; (2) valid location priors improved ReML source localization; (3) invalid location priors did not significantly impair performance. Finally, we show how model selection, using the log-evidence, can be used to select the best combination of priors. This enables a global strategy for multiple prior-based regularization of the MEG/EEG source reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A unified Bayesian framework for MEG/EEG source imaging

The ill-posed nature of the MEG (or related EEG) source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian approaches are useful in this capacity because they allow these assumptions to be explicitly quantified using postulated prior distributions. However, the means by which these priors are ...

متن کامل

MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches

Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activ...

متن کامل

Multimodal integration: constraining MEG localization with EEG and fMRI

I review recent methodological developments for multimodal integration of MEG, EEG and fMRI data within a Parametric Empirical Bayesian framework [1]. More specifically, I describe two ways to incorporate multimodal data during distributed MEG/EEG source reconstruction under linear Gaussian assumptions: 1) the simultaneous inversion of EEG and MEG data using a common generative model [2], and 2...

متن کامل

A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts

The magnetic fields generated by eye movements are major artifacts in MEG measurements. We propose a hybrid hierarchical variational Bayesian method to remove eye movement artifacts from MEG data. Our method is an extension of the hierarchical variational Bayesian method for MEG source localization proposed by Sato et al. [Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., an...

متن کامل

A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration

We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors) on this inverse problem, such as those derived ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2006